Path Following in Social Web Search

Jared Lorince1, Debora Donato2, & Peter M. Todd1

1Indiana University
Cognitive Science Program, Department of Psychological and Brain Sciences
2StumbleUpon
What’s in a path?
Lincoln Memorial, 2 Lincoln Memorial Cir NW, Washington, DC 20037

University of California DC Center (UCDC), 1608 Rhode Island Ave NW Washington, DC 20036
Control your movement by simply clicking on the screen where you want to go.

For all rounds, your goal will be to collect as many invisible food pellets as you can within the time limit. They are worth 1 point each. Once you have collected a pellet it is no longer available to you, but remains available for other players to collect.

More detailed instructions will appear at the bottom of the screen.

Paths in information spaces
Connecting information search and spatial search

• The ecology of information search: Information foraging theory (Pirolli, P., 2007)

• Information search as one manifestation of generalized cognitive search processes (Hills, T., Todd P.M, & Goldstone, R.L., 2008)
“SearchPaths”
Three Levels of Inquiry

1. Cognitive-behavioral (what is the theoretical case for using path information in search and how do people respond to it?)
2. Algorithmic (how can search paths be generated and coherently aggregated across multiple users?)
3. Design-centric (how should such paths be presented to users?)
Path-based search aids should be more applicable to exploratory search tasks, which involve:

1. Ill-defined or multi-component endpoints
2. A meaningful TRAJECTORY through the search space
Previous Approaches

Methodology

Task Development

“You’re on a backpacking tour of Europe, and will be stopping in Innsbruck, Austria, but unfortunately you’ll only have a few hours to spend there. Find the two most interesting activities that could both be done in the 4 hours you’ll have.”
Methodology

Study Design

Baseline Condition – Tasks Alone

Path Construction

Experimental Condition – Tasks & Paths
Methodology

Study Design

Baseline Condition – Tasks Alone

Path Construction

Experimental Condition – Tasks & Paths

Compare to measure path effect
Task #6: Cameron is considering quitting Facebook and using Google+ for his online social networking. What are the best arguments you can find for and against this move? Provide two for each side.

You have submitted 0 answers for this task.

Found an answer on this page Done with answers for this task

SearchPaths

- Mouse over a truncated query to show the complete query.
- Mouse over a click URL to show the title of the limited page.
- Click any of the links in the sidebar to go directly to that page.
- Click a query to perform that search.

Why should I get google plus

Why Should I Get Google Plus?
For those who have been hiding under a rock (or offline) for the last 6 months, Google+ is Google's most ambitious and successful (in comparison to Buzz and Wave ... whyshoudigetgoogleplus.blogspot.com • Cached

Should I get google plus?
[Jul 11, 2011] There is an article Google vs Facebook, read in link below. ... it has some way to go but I like it better then Facebook ... No Facebook is better. ... by iced tea (7 comments.)
answers.yahoo.com/question/index?qid=20110711162101AAKACNZ • Cached
More results from answers.yahoo.com

Why the Heck Should I Use Google+ (or Google Plus)? | Hello ... Using Google Plus, the unique features of this social network and why the networking platform is exponentially compelling users around the globe to join quickly.
www.helloblogger.com/social-media/why-use-google-plus • Cached

Why Google+ won't hurt Facebook, but Skype will hate it ... Google launched its much awaited and highly anticipated social networking platform today to a limited users. Dubbed Google+ (Plus), the service may take its ...
gigaom.com/2011/06/28/why-google-plus-wont-hurt-facebook • Cached

Why Facebook is better than ...
Findings

1. Users \textit{did} utilize the social information when it was available, and used it more on harder tasks.
2. Social facilitation did reduce the negative effect of task difficulty on engagement.
3. There is a trend towards faster completion times and fewer search events in the experimental condition.
4. Subjective evaluations of the search aid were consistent with our intuitions, but not user behavior!
Findings

1. Users *did* utilize the social information when it was available, and used it more on harder tasks
2. Social facilitation did reduce the negative effect of task difficulty on engagement
3. There is a trend towards faster completion times and fewer search events in the experimental condition
4. Subjective evaluations of the search aid were consistent with our intuitions, but not user behavior!
Findings

1. Users *did* utilize the social information when it was available, and used it more on harder tasks
2. Social facilitation did reduce the negative effect of task difficulty on engagement
3. There is a trend towards faster completion times and fewer search events in the experimental condition
4. Subjective evaluations of the search aid were consistent with our intuitions, but not user behavior!
Findings

1. Users *did* utilize the social information when it was available, and used it more on harder tasks.
2. Social facilitation did reduce the negative effect of task difficulty on engagement.
3. There is a trend towards faster completion times and fewer search events in the experimental condition.
4. Subjective evaluations of the search aid were consistent with our intuitions, but not user behavior!
Findings

1. Users *did* utilize the social information when it was available, and used it more on harder tasks
2. Social facilitation did reduce the negative effect of task difficulty on engagement
3. There is a trend towards faster completion times and fewer search events in the experimental condition
4. Subjective evaluations of the search aid were consistent with our intuitions, but not user behavior!
Summing up

Our theoretical approach at the cognitive-behavioral level represents a valuable perspective, but more exploration at the algorithmic and design levels are necessary.
What's next?